Oscillatory and Nonoscillatory Behaviorof Second -

نویسنده

  • R. P. Agarwal
چکیده

|For the diierence equation (pn(yn + hn y n?k)) + q n+1 f (y n+1?`) = 0; the existence of solutions in the classes M + , M ? , and WOS is established.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oscillation and nonoscillation criteria for half-linear second order di¤erential equations

We investigate oscillatory properties of the second order half-linear differential equation ðrðtÞFðy 0ÞÞ 0 þ cðtÞFðyÞ 1⁄4 0; FðsÞ :1⁄4 jsj s; p > 1; ð*Þ viewed as a perturbation of a nonoscillatory equation of the same form ðrðtÞFðy 0ÞÞ 0 þ ~ cðtÞFðyÞ 1⁄4 0: Conditions on the di¤erence cðtÞ ~ cðtÞ are given which guarantee that equation ð*Þ becomes oscillatory (remains nonoscillatory).

متن کامل

Principal Pairs for Oscillatory Second Order Linear Differential Equations1

Nonoscillatory second order differential equations always admit “special”, principal solutions. For a certain type of oscillatory equation principal pairs of solutions were introduced by Á. Elbert, F. Neuman and J. Vosmanský, Diff. Int. Equations 5 (1992), 945–960. In this paper, the notion of principal pair is extended to a wider class of oscillatory equations. Also an interesting property of ...

متن کامل

Principal Pairs for Oscillatory Second Order Linear Differential Equations

Nonoscillatory second order differential equations always admit “special”, principal solutions. For a certain type of oscillatory equation principal pairs of solutions were introduced by Á. Elbert, F. Neuman and J. Vosmanský, Diff. Int. Equations 5 (1992), 945–960. In this paper, the notion of principal pair is extended to a wider class of oscillatory equations. Also an interesting property of ...

متن کامل

Nonoscillation of Second-Order Dynamic Equations with Several Delays

and Applied Analysis 3 In 10 , Leighton proved the following well-known oscillation test for 1.4 ; see 10, 11 . Theorem A see 10 . Assume that ∫∞ t0 1 A0 ( η )dη ∞, ∫∞ t0 A1 ( η ) dη ∞, 1.5 then 1.3 is oscillatory. This result for 1.4 was obtained by Wintner in 12 without imposing any sign condition on the coefficient A1. In 13 , Kneser proved the following result. Theorem B see 13 . Equation 1...

متن کامل

On the nonoscillatory phase function for Legendre's differential equation

We express a certain complex-valued solution of Legendre’s differential equation as the product of an oscillatory exponential function and an integral involving only nonoscillatory elementary functions. By calculating the logarithmic derivative of this solution, we show that Legendre’s differential equation admits a nonoscillatory phase function. Moreover, we derive from our expression an asymp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997